

Creating MIT's First Student-led Driverless Car

July 9th, 2019 | Sibo Zhu, Kathleen Brandes, Kieran Strobel, Luke Kulik

FORMULA STUDENT GERMANY

AN INTERNATIONAL DESIGN COMPETITION OF SKILLS, SPEED AND SPIRIT

1000

OW-RO

(2)

6 (SEL (SEL

Formula Student Competition Disciplines

SkidPad

Autocross and Endurance

Formula Student Competition Disciplines

Best Student Paper Award at ICRA 2018

Two top technology programs, collaborating across the Atlantic

1. Sensors ("Perceive") 2. Compute ("Plan") VLP32C Stereo + Mono Tactical-Lidar grade IMU cameras Nvidia GPU Intel i7 CPU Dual-antenna GPS Kistler ground ACCOLUTION OF speed sensor M MAGNA Stereo-matching TUDelft Illi FPGA MITEAMDELFT 3. Actuation ("Execute") Steering actuator Fail safe emergency brake

• 4WD motor controller interface

Perception

 Interpret the environment using redundant Vision and LiDAR systems

TensorRT

State estimation

 Estimate the state of the vehicle and its environment

Planning & Controls

 Generate feasible driving region and issue optimal control commands

CVXGEN

тозек

EROS ubuntu[®] INTEL MATH KERNEL LIBRARY

Lidar Based Perception
 Camera Based Perception

 Short Range Camera
 Long Range Camera

88

1 1

1. Lidar Based Perception

2. Camera Based Perception

1 4

8,

- Short Range Camera
- Long Range Camera

Lidar ~10m Range, 180° FOV Robust Detections Lidar Based Perception
 Camera Based Perception

 Short Range Camera
 Long Range Camera

Short Range Camera ~13m Range, 95° FOV Redundancy, See into Turns

8

,

Ethernet

Main Compute

Long Range Detections

Short Range Detections

Modifications on YoloV3

+ 5% mAP

Modifications on YoloV3

+ 3% mAP

75% → **89%**

Recall: $88\% \rightarrow 91\%$
Precision: $loss_x$ $loss_y$ $loss_x$ $loss_y$ $loss_w$ $loss_h$

mAP:

+ 5% mAP

+ 6% mAP

State estimation and mapping software architecture

State estimation and mapping software architecture

State estimation and mapping software architecture

VIO vs. GPS deviation is under 1m

Perception

 Interpret the environment using redundant Vision and LiDAR systems

State estimation

• Estimate the state of the vehicle and its environment

autooiro

CERES

SOLVER

ROVIO

Planning & Controls

 Generate feasible driving region and issue optimal control commands

mosek

EROS ubuntu[®] INTEL MATH KERNEL LIBRARY

Path Planning: System Design

Path Planning: System Design

Path Planning: Boundary Generation

OPTIMIZATION DETAILS

- •Mixed Integer Quadratic Program optimizing for:
 - Approximately straight edges
 - Edges with the expected cone spacing of the track
 - Edges near the angle of the heading
 - Edges connecting cones of the same color
- •Constrained to find 2 non-crossing edges with no cycles
- •Solved in CVXpy with Mosek

Thank you to our 2018-19 Season Sponsors!

Latency and lookahead are the constraining factors to fast lap times (1/2)

Latency and lookahead are the constraining factors to fast lap times (2/2)

