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Design of an Autonomous Racecar: Per

State Esti and

v

System Integration

Miguel 1. Valls®, Hubertus F.C. Hendrikx™
Iokyu Sa, Renaud Dubé, Abel Gawel,

Absiract—This paper Eatraduces fliale driverles: the tiest
wlenomom ricocar (o win & Formels Student Driverles
ampetifion. In this comgetition, ameng, other challerges, un
aulonomons cmccar i tawked o complete 1) daps of o pre-

elleetivencs by vutpesforming i

deami by alesost hall the time roquivad 1o finish o lap, o

Wi rucecar ronches luteral snd losgitudinal sccelerations

cmparsble to thase achleved by experienced humsan drivers.
1. INTRODUCTION

On August 13h 2017 fliela driverless became the Birst
war o ever win the Pormula Stadent Driverkss (FSD)
competinon. The competition requires the car o race Tully
wtanoesouly and coosists of 4 dynanic and 4 static dis-
ciplines [1]. The dynami disciplines tost the system's ro
Jability under geseral race conditions and sl bgh baeeal
and loagitadinal speeds. The static disciplines evahute the
wystem's design vader aspects of software, hardware, costs.
and business. While Miela driverfesy performed well s all
categories, we this paper focuses v seftware and hardware
designs

The hardware plutform for the peoject is fliela, an electric
AWD car with a full serodynamic package. bigh wheel
wrque, and a lightweight design developod by AMZ' for
Formule Swdent Electric 2015, The sensor outfit for an-
wnomons aperation and the vottwire system are developed
from svatch.

1o our swtosomous design, system relishilny under high
performance operstion ks chosen w the main design goals
since the FSD segulations allow no human inierventon

This paper presests the stae estimation, LIDAR SLAM
and focalization systoms that were imegrated in fdela, The
AO0OEOUS SyMEm perceives B sarroundings wing & 3D
LIDAR and & self-devebopad visual-inenial stcre camers
system. Furthermare, a velocity sessor and as Tnotisl Nav-
ization Sysiem (INS) combining an IMU and a GPS were
added for state estimation. All fe information is processed

o baten) eqmedly 1o dhis work
Auoecenoun Syseeas L, FTH Zucch, Zarich

Victor LE Resjgwart’, Fabio V. Meser®
Mathias Birki, and Roland Siegwart

Fig L Mieky deiverieas, he witmsy clecieic, sstosonmass WD racecer 4
he ormaita Seadken Gerruay 3007, The LIDAK. the GI7S s due visss
Iocesal ayuterm e rovpestively srarkind by tage | 0 1

onlise by two compatng units runeing Robot Operating
Sysem (ROS) and & rwal-time capable Elecronic Comtrol
Unit (ECU). Figare 2 sbows an aveermew of the hanwarc-
softwane setip

I arder 1o resch fliela’s full poteatial when racing au

tonomously, the mck nast be known at deast 2« abead. At
high speeds, this reqaires a perception heeizon st exceeds
the seasors” runge. The car must thus drve carcfully o
discover and map the ek, This mode will lates be referred
W e SIAM Mode. Once the wap i kaown, the car can
drive i Lavalzrtion Made which can explok the advantage
of planning on the previously migpod race-track

The comtribuans of this paper are:

o Acomplete pipeline from percepéion Lo state estimation
with an-board sensors znd computation vnly. capable of
ving an autonomus Facecar close 1o # human drtver's
petfocnsnce

« Estonsive experimental evalustion and demonstration in
realownrld racing scenanos

The remainder of this paper is stroctured as follows

Section [l introdaces vate-of the-ar work 0e susmomoos
racing, Section 111 describes the theoeetical developaest for
this peoject sad Section IV the implemestation details. We
presem our experimental result in Section [V, and conclade
o Sectien YL

T RILATED WORK/BACKGROUND

Autonvaxous cing is an emerging feld within au-
tonoeous driving. In the last years, a few self-racing vehicles
have been developed. bt in scadomic amd i the indusrial
research. The firt known sutonamous vehicle competition

Best Student Paper Award at ICRA 2018
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1. Sensors (“Perceive”)

2. Compute (“Plan”)

-

_od
VLP32C Stereo + Mono Tactical-
LiDAR cameras grade IMU

Intel i7 CPU Nvidia GPU

Dual-antenna GPS  Kistler ground
. speed sensor

\ 3. Actuation (“Execute”)

= Steering actuator
= Fail safe emergency brake
= 4WD motor controller interface




Perception State estimation Planning & Controls

Interpret the environment « Estimate the state of the * Generate feasible driving
using redundant Vision and vehicle and its environment region and issue optimal
LiDAR systems control commands
" A‘C_*j’; CVXGEN
/). 4o SOLVER _ToOLKIT

autopiLot

ROVIO

ROS  ubuntu®  INTEL MATHHERNEL LIBRARY

? Jenkins Qdocker




/ Perception \

* Interpret the environment
using redundant Vision and
LiDAR systems

L= —

\ | —
\\\ _.
Foypel GO

\ DpenCV/










1. Lidar Based Perception

2. Camera Based Perception
-Short Range Camera
-Long Range Camera

A

P A



1. Lidar Based Perception
2. Camera Based Perception
-Short Range Camera
-Long Range Camera 1 S
§ Lidar
~10m Range, 180° FOV
Robust Detections




1. Lidar Based Perception
2. Camera Based Perception
-Short Range Camera

-Long Range Camera 14 8 Short Range Camera

A ~13m Range, 95° FOV
Redundancy, See into Turns




1. Lidar Based Perception
2. Camera Based Perception
-Short Range Camera
‘Long Range Camera

Long Range Camera
~30m Range, 33° FOV
Vehicle Speed
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Camera Perception - ROS

4 N\ [ \ (. . )
Data Input Inference - TensorRT Depth Estimation
(" )

Monocular

Vision Driver
g J

Raw

Image Cone : Monocular Vision

ColourNet Keypoints - -

.-~ I(rgzgcg)e (BTLnet) N Depth Estimation

Image
r

Driver Point Cloud ] Depth Estimation

.




Camera Perception - ROS
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Camera Perception - ROS
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Camera Perception - ROS

4 N\ [ \ (. . )
Data Input Inference - TensorRT Depth Estimation
(" )

Monocular

Vision Driver
g J

Raw

Image Cone : Monocular Vision
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Long Range Detections

Short Range Detections




Modifications on YoloV3

+ 5% mAP

Original Training Data
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Modifications on YoloV3

+ 5% mAP
Original Training Data
+ 3% mAP | e
mAP: 75% — 89% _— d"fd_"‘_ =
odirie raining vata
Recall: 88% — 91% 500
Precision: 18% — 88% o
loss. loss. g
X )
lossconf 100 1 o* .&"i
loss,, loss, P
+ 6% MmAP | e w B B B o
Width



/ State estimation \

Estimate the state of the
vehicle and its environment

CERES
) ¢'d SOLVER

autopiLot

S ROVIO y







State estimation and mapping software architecture

: Sensors :
E : VIO Camera : :
é I IMU ) :
[ enss [ a@ss
i Steering 1 iWheeI Encodersj —

Perception End Products :
: Vision landmarks j’
, LIDAR landmarks




State estimation and mapping software architecture

: Sensors : « Estimation :
. [ vio camera —»  VIOEKF | .
; IMU !
: GNSS GSS - Y :
= N/ . -—r>[ Embedded EKF ]—
: Steering Wheel Encoders | + | ;
P ™ ® ® @ @ e 0 oo o e oo o0oaeooeoeeoeoeoe e ! ]
+ Perception End Products : ; :
- Vision landmarks ) | Multi-hypothesis |_*
. : \ ' mapping '
' LIDAR landmarks 'L ) !




State estimation and mapping software architecture

: Sensors : : Estimation : : Distribution :
: VIO Camera : :>[ VIO EKF ] : ; ;
; IMU j o - ;
o N 7 R . > LiDAR ;
: GNSS GSS | o \ / e B =
< 7 ~ -—r>[ Embedded EKF ]—-> Controls )
: Steering Wheel Encoders | » | e ) J:
L I .o ' L Planning :
f " cecceccccsnccacccsnscacccscnasesas « 0 ! \ 7 4
» Perception End Products : : ) T )
- Vision landmarks ) : Multi-hypothesis v :
Y ) \ ‘ mapping v ! )
' LIDAR landmarks . ) '




rA Touch panel required
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VIO vs. GPS deviation is under 1m
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/ Planning & Controlsx

« Generate feasible driving
region and issue optimal
control commands

M CVXGEN
MoseK
\- /




Path Planning: System Design
& I

\ Boundaries / \
[ Cone Locations ) during mapping ( 7 (
’ Boundary lap R Midline ,| Local Model Predictive
_ — Generation Identification Contouring Control
[ Vehicle Position
Boundaries during —
mapping lap ";:‘%-:: gy
[ Acceleration ] [ Yaw Rate ]
Boundary ) K /
History Extended
boundaries after
mapping lap

N Y,




Path Planning: System Design

N Boundaries / \
[ Cone Locations during mapping ( 7 (
’ Boundary lap . Midline .| Local Model Predictive
_ N Generation Identification Contouring Control
Vehicle Position
Boundaries during i —
mapping lap T

) K / [ Acceleration ] [ Yaw Rate ]
Boundary

History J Extended

boundaries after
mapping lap

__ Y,




Path Planning: Boundary Generation

OPTIMIZATION DETAILS

— Approximately straight edges

B I : : — Edges with the expected cone spacing of the
track

\ — Edges near the angle of the heading

\ , i eMixed Integer Quadratic Program optimizing for:

— Edges connecting cones of the same color

eConstrained to find 2 non-crossing edges with no
cycles

eSolved in CVXpy with Mosek
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Latency and lookahead are the constraining factors to fast lap
times (1/2)

2 2
Vi e — U

dpe = 2tpGVrer d, = rzeg !
max

d v4
‘/ref S Amax <\/<tp + 2tBG + tact)2 + 2 l + ! - (tp + 2tBG + tact))

2
Amax amax




Latency and lookahead are the constraining factors to fast lap
times (2/2)

Driven by CNN inference, depth stereo
matching and point cloud clustering

/

345 200

#— —————— % LiDAR and Vision o _
/ work in parallel I Mapping incl. LIDAR
267 172 140 Mapping
——————— AS Core
95 .
50 4o I 2
AS Latency (Total) Perception Planning Actuation

\ Driven by boundary generation




